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Abstract— A correct representation of uncertainty in 

measurement is crucial in many applications. Statistical 

approach sometimes is not the best choice, especially when 

the knowledge of the measurement process refers only to the 

support of the values and does not allow a correct assumption 

on the probability density function (pdf) of the measured 

variable. In this paper we present an approach that uses the 

concept of generalized fuzzy numbers, namely Type-2 fuzzy 

sets, in order to handle the intrinsic dispersion of the possible 

pdfs associated to a variable. The relation between our 

representation and the so called Random Fuzzy Variables 

(RFV) will be also investigated. The use of this representation 

allows to easily implement the uncertainty propagation, 

through a functional model, by working directly on the Type-2 

fuzzy numbers and by evaluating simultaneously the 

propagation results for the whole set of confidence levels. 

Anyway, when a statistical analysis can be performed, the 

results can be embedded in this generalized representation. 

Moreover, the new approach allows to assign to the final 

measurement value a reliable confidence level also in this 

case, by combining the expanded uncertainty evaluated 

following IEC-ISO Guide recommendations with the Type-2 

fuzzy numbers associated to the output variable. An example 

of this representation will be also provided .The IT2FLS 

design methods have been empirically verified in this work in 

the realm of pattern recognition. In particular, the potential 

and the suitability ofIT2FLS to the problem of classification of 

motor imagery (MI) related patterns in electroencephalogram 

(EEG) recordings has been investigated. The outcome of this 

study bears direct relevance to the development of EEG-based 

brain-computer interfaces (BCIs) since the problem under 

examination poses a major difficulty for the state-of-the-art 

BCI methods. The IT2FLS classifier is evaluated in this work 

on multi-session EEG data sets in the framework of an off-line 

BCI. Its performance is quantified in terms of the 

classification accuracy (CA) rates and has been found to be 

favorable to that of analogous systems employing a 

conventional T1FLS, along with linear discriminant analysis 

(LDA) and support vector machine (SVM), commonly utilized 

in MI-based BCI systems. 

 
Keywords-Uncertainty,probability-possibility transformations, 

Type-2 fuzzy variables. pattern recognition, 

electroencephalogram, brain-computer interface. 

 
 

I.  INTRODUCTION  

The correct representation of the measurement associated to a 

given variable is a focal point in many applications. An 

exhaustive description of the principal recommendations about 

how a reliable expression of the measurement and of its 

uncertainty has to be performed, is contained in the IEC-ISO 

“Guide to the expression in measurement” [1] which we 

address almost totally. Principally, the IEC-ISO Guide states 

that the measurement cannot be expressed by a single value, 

but by a distribution of values over an interval within which 

the measurements lie with a given confidence level. So, 

detailed rules are provided in order to evaluate this distribution 

with the highest confidence level associated. The probabilistic 

approach represents the natural way of computing uncertainty 

estimation and performing uncertainty propagation through a 

functional model, but recently many limitations of this 

approach have been focused. In particular, in order to perform 

a correct probabilistic representation of the measurement, a set 

of independent observations is needed. In particular, in order 

to perform a correct probabilistic representation of the 

measurement, a set of independent observations is needed. 

However, in many applications, the value assigned to a certain 

variable is taken from manuals, calibration reports, handbook, 

reference values, so that any assumption on the probability 

density function (pdf) associated to a variable cannot be 

reliable. Moreover, in order to propagate the uncertainty 

through a generic function f, the joint pdf and the statistical 

correlation have to be estimated. Again, if a very weak 
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knowledge is available about some of the involved variables, 

all these estimations can lead to a strong error propagation, 

thus producing eventually a biased expression of the combined 

uncertainty. 

 

In all these cases, in particular when a type-B evaluation [1] of 

uncertainty is needed, alternative methods have to be 

implemented. Recently [3, 4], a fuzzy approach has been 

investigated in order to represent uncertainty in measurement 

when the available information is poor and does not allow a 

statistical  analysis for uncertainty handling. The concepts of 

fuzzy variables and fuzzy sets have been introduced by Zadeh 

[5, 6] as an extension of the traditional concept of membership 

of a variable a to a set A. In crisp set theory this membership 

is represented by a one  or by a zero . 

whereas in fuzzy set theory it can be modeled by a MF 

such that , with μA(a) 

convex and normal (i.e., there exists at least one value b such 

that .The set A is called fuzzy subset and the 

support of A is the set of points at which μA(a) is positive. 

The α−level set (or α−cut) of A is a non fuzzy set, denoted by 

Aα, defined as Aα = {a|μA(a) _ α}. In [7] Zadeh also 

introduced the concept of possibility theory as a mathematical 

counterpart of probability theory that deals with uncertainty by 

means of fuzzy sets, so that a fuzzy/possibility approach is 

denoted. Moreover, in [3, 4] the authors also underline that the 

fuzzy/possibility approach is between interval analysis and 

probability theory. The former is the less expressive because 

uses only the information of upper and lower bounds of an 

interval, without any relation with a level of confidence (so 

with a membership degree). This is not sufficient to use IEC-

ISO Guide recommendations in uncertainty expression. 

Otherwise, the probability approach is somehow too rich for 

representing relative lack of information coming from human 

experts or imprecise sensors. 

Appropriate modeling of non-stationary responses of 

realworld  systems is a challenging systems engineering 

problem. Its complexity can be particularly acute as the 

intrinsic characteristics of real-world systems are often 

severely nonlinear. In this paper, the emphasis is on robust 

handling nonstationary effects in pattern recognition problems, 

where the inference is drawn under uncertain conditions. 

Classifier systems designed for effective accounting for non-

stationary responses often involve a mechanism to monitor or 

assess the validity of stationary feature distribution hypothesis 

normally made during a classifier design. The assessment 

outcome can be used to update the classifier to track the 

system evolution. The problem of assessing the stationarity 

hypothesis can be addressed with three main approaches: data-

driven, analytical or knowledge-based [1]. A data-driven 

approach directly inspects data coming from the process and 

assumes that the available data set is large enough to assess 

the validity of the stationarity hypothesis with large 

confidence [2][3]. This solution guarantees a good drift 

detection ability without requiring any a priori information 

about the process under investigation. The analytical modality 

assumes that a mathematical description of the process 

generating the data is available: only few data are hence 

required to assess the hypothesis [4][5]. The knowledge-based 

modality assumes instead that some a priori information about 

the process (but not the model) is available, e.g., derived from 

data samples based on causal analysis [4][6]. The 

identification of the time instant associated with the loss in 

stationarity allows the designer to take actions, e.g., by 

updating the classifier network weights to track the process 

evolution [7] or retraining the classifier [8][9] exactly when 

needed.In this work, special attention is given to non-

stationarity manifestations in neurophysiological data. In 

particular, the challenging task of discrimination of patterns in 

the electroencephalogram (EEG) signals recorded from 

subjects performing motor imagery (MI), e.g. imagining left or 

right hand movement, as part of an EEG-based brain-computer 

interface (BCI) system. The underlying EEG data demonstrate 

a broad spectrum of non-stationary effects at different 

temporal levels. They mostly arise out of the variability of the 

brain state dynamics due to changing mental focus, 

motivation, and biofeedback effects, among others, during 

BCI experiment. In the BCI community, the issue of long-term 

changes in the salient EEG characteristics, mainly between 

experimental sessions, is considered to pose a significant 

challenge. It has been approached by several methods with 

varying degree of success. In [9], a neural classifier was 

retrained every day of the subject’s training session and then 

embedded in the BCI that was operated the following day. 

Although this approach involving frequent inter-session 

recalibrating is commonly exploited, it only partially mitigates 

the effect of long-term non-stationarities and it is rather 

impractical. Shenoy et al. [10] investigated changes in the 

EEG feature distribution obtained in training and test BCI 

sessions with feedback. 

 

 

II. TYPE-2 FUZZY SETS FOR UNCERTAINTY 

HANDLING 

 

In [11] Zadeh firstly introduced the concept of generalized 

fuzzy sets. Suppose that A is a fuzzy set and suppose that the 

MF μA(a) associated is allowed to be a fuzzy subset in the 

interval [0, 1]. In order to differentiate this kind of generalized 

fuzzy sets from the classical ones Zadeh refers to them as 

Type-2 fuzzy sets. More generally, he gives a recursive 

definition of Type-n fuzzy sets as follows 
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Fig. 1. Example of an interval Type-2 MF 

  

Definition II.1: A fuzzy set is of Type-n, n = 2, 3, . . ., if its 

MF ranges over fuzzy sets of Type-(n − 1). The MF of a fuzzy 

set of Type-1 ranges over the interval [0, 1]. 

In a recent literature [13,14], various classes of Type-2 MFs 

are inspected, but anyway a particular one, including the so 

called Interval Type-2 fuzzy sets, has been widely investigated 

and applied in various contexts such as decision making, 

timeseries forecasting, control of mobile robots [14], etc. 

Interval Type-2 fuzzy sets are the most widely used Type-2 

fuzzy sets because they are simple to use and because it is 

very difficult to justify the use of any kind of Type-2 fuzzy 

sets. In this case, the MF μA(a) is an Interval Type-2 fuzzy set 

so that it can be represented only by its lower and upper 

bounds (i.e. by two Type-1 MFs). This situation is depicted in 

Fig. 1 and compared with other typologies of non Interval 

Type-2 MFs (denoted as General Type-2 MFs). In order to 

identify how to easily operate on this class of more complex 

fuzzy sets, in [12] the concept of interval of confidence of 

Type-2 is introduced. 

Let us recall now some basic notions. Assume that the lower 

and upper bounds of an interval of confidence, instead of 

being ordinary numbers, are fuzzy numbers, that themselves 

have intervals of confidence. We will denote this kind of 

Type-2 interval of confidence as 

 

A = [[a1, a2], [a3, a4]] 

such that a1 _ a2 _ a3 _ a4. When a1 = a2 and a3 = a4 the 

interval of confidence of Type-2 becomes an interval of Type-

1 and if a1 = a2 = a3 = a4 the interval becomes of Type-0 

(i.e., a number). Consider now a sequence of intervals of 

confidence of Type-2 that depends on α, that is 

 

 
In order to perform algebraic operations on Type-2 fuzzy 

sets let us consider now that a fuzzy number of Type-2 can be 

constructed in two ways. 

 
Fig. 2. Two ways of building a Type-2 fuzzy number (a) and 

(b) 

1) Given a Type-1 fuzzy number A and a convex fuzzy subset 

B we build a Type-2 fuzzy number as shown in Fig. 2 (a). 

Note that we can identify a gamma of Type- 1 MFs belonging 

to the range [B,A], as for example the dotted MF. 

2) The second kind of construction considers a Type-1 fuzzy 

number A and its translation of a certain Δa thus obtaining Fig. 

2 (b). The latter interpretation is commonly used in literature 

[13,14]. It can be seen as a blurring of a Type-1 MF around a 

central value, thus producing the corresponding Type-2 MF. 

Otherwise, the former representation is the one we address in 

this paper, since the fuzzy subset B is naturally the inner MF 

(i.e., a lower bound) and the fuzzy set A corresponds to the 

outer MF (i.e., an upper bound). This point of view will allow 

us to directly construct the Type-2 MF in the context of 

uncertainty representation. In order to investigate also the 

relation among Type-2 MF and RFV let us refer to [12]. Let us 

consider newly a Type-2 fuzzy number by its α−cuts 

 

Now, let us assign to each segment  and 

 a pdf fL(α, x) and fR(α, x) respectively. 

Therefore, in the interval of confidence, the lower and the 

upper bounds become random variables. Figure 3 shows this 

concept, with FL and FR the probability distribution functions 

associated. 

In [12] the authors also show that the envelope of a RFV is a 

Type-2 fuzzy number, and that, while the operations on the 

RFV are necessarily performed by sum-product convolution 

(since the confidence interval is represented by two pdfs), the 
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 Fig. 3. Random Fuzzy Variables embedded in Type-2 MFs 

operations on Type-2 fuzzy numbers can be performed by 

maxmin convolution that corresponds to the use of the so 

called Extension Principle (EP) by Zadeh. They also show that 

the application of EP can be turned into working directly on 

α−cuts, under the assumption of independent variables. 

Anyway, the use of RFV, is necessary when systematic errors 

or their corrections are partially unknown, so that standard 

approaches produce a wrong evaluation of uncertainty. In this 

case a particular class of rectangular Type-1 MF are embedded 

into the RFV, in order to model systematic errors or their 

uncomplete correction. In the following, we will assume that 

systematic errors are completely corrected, so that only 

random effects should be considered. So, in order to express 

uncertainty we consider the 

use of Interval Type-2 MF. 

 

 

This paper reports an empirical investigation into systematic 

data-driven approaches to fuzzy classifier design within the 

framework of a so-called interval type-2 (IT2) FLS that 

represents a subcategory of T2FLSs (cf. section III). A 

computationally effective design methodology is essential to 

deal with systems involving large data sets, particularly in 

cases of systems exhibiting acute non-linear and non-

stationary characteristics. With the central objective of 

automating the classifier design process, several innovative 

methods for fuzzy rule base structure initialization and its 

parameter optimization are devised and analyzed in this work. 

The proposed enhancements are incremental and heuristic in 

nature. A complete design process and implementation of a 

BCI classifier is discussed in the paper. The primary aim is to 

examine the effectiveness of a novel IT2FLS-based approach 

to robust multi-session BCI classification. Therefore, special 

attention is paid to the classifier’s capability to generalize well 

across a few data sets obtained at different times. The 

presented instance of brain signal pattern recognition 

illustrates the challenging nature of a more general problem 

of reliable analysis and interpretation of EEG in the presence 

of non-stationary effects. This paper is organized as follows. 

Section II outlines the specific problem of MI related EEG 

pattern recognition considered in the paper. Section III 

elaborates on the T2FL methodology developed and employed 

in this work. In section IV, the results of the BCI experiments 

are demonstrated and discussed. Conclusions are then 

presented in section V. 

 

III. MOTOR IMAGERY-RELATED EEG PATTERN 

RECOGNITION PROBLEM 

A. EEG Data Description The EEG data were recorded in the 

Intelligent System Research Centre, University of Ulster at 

Magee, Derry, UK. 

The EEG data were obtained from 8 subjects in a timed 

experimental recording procedure where the subjects were 

instructed to imagine moving the left or the right hand 

depending on the horizontal location (left/right) of a target 

basket displayed at the bottom of a monitor screen (Fig. 1). 

Each trial was 7 s in length. A ball was displayed at the top of 

the screen for the first 3 s. In the meantime, at t = 2 s acoustic 

stimulus signified the beginning of a trial. At t = 3 s the ball 

started moving to the bottom of the screen. Therefore the 

segment of the data recorded after t = 3 s of each trial is 

considered as event related. The horizontal component of the 

ball movement was continuously controlled in on-line 

experiments by a subject via the biofeedback mechanism [12] 

employing an IT2FLS classifier. In this paper however, the 

fuzzy classifier is evaluated in off-line analysis, after the data 

have been collected. In addition, it was designed for discrete 

classification of entire EEG trials resembling the concept of 

single MI related EEG trial classification, unlike continuous 

classification at every time point in on-line mode. 

 
 

 
Figure 1. Illustration of a BCI basket paradigm. 

 

The EEG trials were recorded with a g.tec amplifier from two 

bipolar EEG channels over C3 and C4 locations (10/20 

system) [20]. They were then sampled at a frequency of 125 

Hz and band-pass filtered in the frequency range 0.5–30 Hz. 

The data were obtained over 10 sessions, each session 

consisting of 160 trials. Four consecutive sessions for each 
subject were arbitrarily selected for further off-line analysis. 

 

B. Feature Extraction 
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Due to the oscillatory character of the MI induced brain 

phenomena, reflected in the sensorimotor EEG activity, a 

method of spectral analysis was employed in the signal 

quantification. The EEG rhythmical content within μ (8–12 

Hz) and � (18–25 Hz) ranges was examined in this regard 

since it reveals lateralized signal power patterns over C3 and 

C4 locations characteristic of the MI that a subject is 

performing (left vs. right MI). In particular, when the 

sensorimotor area of the brain is activated during the 

imagination of hand movement, the interplay between 

contralateral attenuation of the μ rhythm and ipsilateral 

enhancement of the central oscillations in different phases 

of MI can usually be observed. These processes occur due to 

the neurophysiological mechanisms of the so-called event-

related desynchronization  (ERD) and event-related 

synchronization (ERS) [20]. The exact EEG manifestations 

and frequency bands of ERS and ERD vary from subject to 

subject.The event-related segment of each EEG trial (the last 4 

s corresponding to 500 samples) was divided into rectangular 

windows depending on the settings of two parameters: 

window length and the amount of overlap. Next, the 

frequency-related information was extracted from every 

window with a parametric power spectral density (PSD) 

method that employs Yule-Walker algorithm for 

autoregressive (AR) modeling [21]. The EEG features were 

calculated in each time window as the total energy within the 

bands of interest (adjusted μ and ).This served as an element 

C3/C4 i x of the feature vector x in (1). 

 

C. Classification Problem 

Given a set of feature vectors representing EEG trials, the 

classification task undertaken in this work is to associate them 

with classes of mental tasks, more specifically – MI. This 

instance of brain signal pattern recognition is dichotomous in 

nature since the differentiation between an imagination of left 

and right hand movement only is aimed. The problem is 

challenging due to various non-stationary effects inherent to 

the on-going electrophysiological brain activity, as discussed 

briefly in section I. Here, the emphasis is placed on the 

effective dealing with long-term changes in EEG spectral 

patterns correlated with MI. In particular, robust inter-session 

classification performance is the main focus of this work as it 

represents an urgent need in BCI. A successful method is 

expected to maintain a satisfactory accuracy rate over a few 

sessions recorded at distant times (here: once a week) without 

the need for frequent inter-session adjustments. The major 

difficulty in this regard lies in the session-to-session 

variability of the salient EEG features. The next section 

proposes an IT2FLS-based approach to discrimination of MI 

induced EEG patterns as an instance of a broad category of 

non-stationary pattern recognition problems, where no 

underlying analytical system model or its probabilistic 

description is available. The emphasis is on design 
methodology for an IT2FLS classifier to effectively exploit its 

framework for handling variability in data. 

 
Type-2 fuzzy numbers for type-B uncertainty handling 

 

Let us suppose that the measurement of the variable X is 

provided in the form (X0±UX)M, where UX is the expanded 

uncertainty of X, taken from manuals, calibration reports etc., 

and M is the measure unit (in the following omitted for 

notation simplicity). Then, in the case of incomplete 

knowledge of the pdf associated to X (i.e., in a type-B 

uncertainty expression), it is possible to build a gamma of pdfs 

starting from the declaration of X and by various assumptions 

and knowledge of the performed measurement process. Under 

these considerations, we can have the situation in Fig. 4. 

Obviously, given the support [x1, x2] the gaussian probability 

density function (gpdf) with σ = (x2−x1)/6 (i.e., containing the 

99.73% of the pdf in the support) is the most localized pdf 

around the central value xm = (x1 + x2)/2, whereas the 

uniform probability density function (updf) with the same 

support is the least localized pdf. Using the probability-

possibility transformations introduced in [8] the Possibility 

Distributions (PDs) shown in Fig. 5 

 

 
Fig. 4. Various pdfs associated to a type-B uncertainty 

evaluation 

 

 
Fig. 5. PDs related to various pdfs associated to a type-B 

expression of uncertainty are obtained. 
 

Note that there is a set of possible PDs associated with the 

support [x1, x2] ranging from the PD related to a gpdf (that we 

will denote as Error function Possibility Distribution (EPD)) 

to the PD related to the updf (Triangular Symmetric possibility 

Distribution (TSPD) in the following), through the internal 
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Parabolic Possibility Distribution (PPD). If one considers as 

the lower bound of this set of PDs the dotted one (i.e., the 

EPD) and as the upper bound the dashed one (i.e., the TSPD) 

then a Type-2 fuzzy number is obtained, denoted by its Type- 

2 α−cut, 

where  

 

 

and can be easily obtained as 

 

 
Now, each variable can be represented by means of this Type- 

2 MF, whose support is taken from the type-B expression of 

the measurement value. Otherwise, when a set of repeated 

observations for a given variable is available, then the IECISO 

Guide recommends to perform a statistical analysis (i.e., a 

type-A uncertainty evaluation), so that a reliable estimation of 

the correct pdf can be extracted. Let us suppose, for example, 

that a gpdf is the best MLE for a given variable. Then, the use 

of the probability-possibility transformation involving only the 

gpdf, thus producing a EPD, leads to the degenerate Type-2 

α−cut 

……….(2) 

and 

…………………(3) 

Note that, in this case, the Type-2 MF reduces to a Type-1 

MF, embedding the information added by the statistical 

analysis. So, in order to propagate, through a function f, the 

uncertainty of each variable, the unique representation by 

means of Type-2 MFs can be adopted, so that the operations 

involved in f can be applied directly on the Type-2 α−cuts 

[[xα1 , xα2 ], [xα3 , xα4 ]] working as summarized in [12]. 

 

IV. A SYSTEMATIC APPROACH TO THE IT2FLS 

CLASSIFIER DESIGN 

A. A Brief Introduction to T2FLS Classification Although the 

concept of T2FL was introduced in the fuzzy community over 

three decades ago, it remained in the realm of theoretical 

studies until recent work by Karnik and Mendel [14]. The 

introduction of an IT2 fuzzy set (FS), re-definition of T2 fuzzy 

operators and T2 inference mechanism have encouraged 

further advancement. Finally, the development of 

computationally efficient algorithms for T2FLSs has led to a 

revival of marked interest in their practical applicability to 

address a broad spectrum of problems where more than static 

imprecision in data needs to be accounted for. The concept of 

T2FL can be briefly described as expanded conventional 

T1FL based on FSs that are themselves fuzzy. In consequence, 

another dimension of fuzziness is introduced to the definition 

of a T2FS. The two-dimensional domain of support for 

additional secondary membership functions, referred to as a 

foot of uncertainty (FOU) [15], plays an important role in 

handling inconsistently varying information content. The 

enhanced flexibility in modeling the associated uncertainty 

due to the increased number of degrees of freedom underlies 

the potential of T2FLSs to outperform their T1 counterparts in 

problems where classification or approximation is to be made 

under uncertain, variable conditions. On the other hand, 

special care has to be exercised in T2FLS development in 

order to appropriately exploit the T2FL apparatus for handling 

uncertainty without sacrificing its generalization capability. 

This objective underpins the investigations into optimal design 

approaches in the domain of IT2FL classification. The IT2FL 

methodology is targeted in this work due to its 

computationally efficient implementation, which is an 

important asset in practical applications considering the 

complexity overhead of general T2FL tools. An IT2FLS relies 

on IT2FSs, whose secondary membership functions over the 

FOU are constant and equal one [15]. This substantially 

simplifies operations on FSs and facilitates transparent flow of 

uncertainties through a T2FLS. Here, IT2FSs with uncertain 

mean are utilized in the framework of the proposed fuzzy 

classifier. The FOU of such FS is presented in Fig. 2, which 

illustratively juxtaposes a T1FL and T2FL rule pattern 

adopted in the reported study. 

 

B. IT2FLS Design 

The rule base of the IT2FLS classifier developed in this work 

is of Mamdani type. Thus, a template of a fuzzy rule, shown in 

Fig. 2, is the following: 

 

 
FSs Xi (i=1,..,2Nwin) are the T1 fuzzified components 

(Gaussian T1FSs) of an input feature vector x (cf. (1) in 

section IIB) to account for the possibility of stationary 

uniform noise present in the feature space. Ãi’s denote IT2FSs 

with uncertain mean and C is the interval centroid of the 
consequent T2FS representing the class that the input feature 

vector is assigned to. Hence, the IT2FLS rule base models 

uncertainty related to the variability of EEG features and the 

vagueness of a crisp MI label, i.e. left vs. right. The latter 

concept accounts for the difficulty in producing unambiguous 

mental task category.To facilitate gradient-based optimization, 

all the FSs are Gaussian.The IT2FLS classifier was designed 

in a two-stage procedure, inspired by general FLS 
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methodology. Firstly, an initial fuzzy rule base was identified 

and secondly, its parameters were tuned using a global 

optimization approach. The design was conducted on the so-

called calibration data set, split into a validation and a training 

subset. The final evaluation was performed on an unseen test 

data set. 

 

 
Figure 2. Illustrative comparison of T1FL and T2FL rule 

patterns. 

 

1) Fuzzy Rule Base Structure Identification 

The dimensionality of the EEG feature space, i.e. 2Nwin (cf. 

(1) in section IIB), determines the number of the fuzzy 

classifier’s inputs. An initial fuzzy rule base was found 

through partitioning of the input space domain since it has 

been considered as one of the most effective methods of FLS 

structure identification. The main objective of this design 

phase was to obtain a compact data representation that reflects 

the underlying distribution of the features and thus captures 

their salient characteristics preserving at the same time their 

class assignments. To this end, a general clustering approach 

was adopted to devise a conventional prototype T1FLS rule 

base and in the spirit of partially-dependent initialization [15], 

it was then extended to serve as an initial T2FLS framework. 

In the first place, a mapping-constrained agglomerative 

(MCA) clustering algorithm was employed to reinforce the 

consistency in the mapping from the input to the output space. 

The MCA algorithm has been proven to be robust to noise and 

outliers that can affect the input-output relationship [22]. 

However, due to the excessive susceptibility of an original 

single-pass (sp) MCA to variations in the input data ordering, 

a heuristic modification was found essential. To this end, a 

multipass (mp) MCA algorithm was developed in this work. 

Firstly, an original MCA was iterated several times 

(parameterized) with the core input data appended with the 

data points representing means of clusters found in the 

previous iteration. The core data were shuffled at each 

iteration. Moreover, for every iteration the record of a cluster 

validity index, based on the classification performance of the 

prototype T1FLS (see below) reported on a separate validation 

set, serving as a performance measure of the given cluster 

structure was kept. The maximum of this measure determined 

the iteration that resulted in the target cluster structure. The 

prototype T1FLS rule base was derived without any extra 

parameters from the clusters identified using the MCAbased 

scheme with the number of rules equal to the number of 

clusters. An unquestionable asset of the MCA in this regard 

stems from the fact that it provides information not only about 

the cluster position in the input space (the cluster means) but 

also determines their spread in terms of the standard deviation 

estimate. Moreover, initialization of the corresponding fuzzy 

rule consequents is straightforward due to the consistency in 

the input-output mapping promoted by the algorithm. As 

shown in Fig. 2, the T1FLS prototype’s consequents are 

expressed in terms of crisp class labels, -1 and 1, associated 

with left and right MI, respectively. In addition, for a 

comparative evaluation, the fuzzy c-means (FCM) clustering 

was employed due to its wide applicability in fuzzy rule base 

identification [23]. The algorithm requires the prior 

assumption of the number of clusters, which was selected in 

this work based on the above-mentioned cluster validity index. 

The input data space was clustered and the resultant cluster 

centers projected on each input dimension served as rule 

prototypes. The widths of the FSs were calculated as the 

onedimensional standard deviations of the subset of the input 

data points with the membership degree in the corresponding 

clusters above a certain threshold (parameterized). Since FCM 

does not explicitly account for the mapping between the input 

and the output space, the fuzzy rule consequents were 

uniformly randomized in the interval [-1,1]. An arbitrary 

initialization scheme was also verified in this work due to its 

relative simplicity and thus low computational cost. An 

algorithm, similar to Wang-Mendel one-pass method [15], 

consisting of dividing each dimension of the universe of 

discourse into a given number of intervals (parameterized) 

associated with arbitrary FSs and then constructing a rule base 

from the combination of FSs with the highest firing degrees 

for training data set was used. The rule firing degree was 

calculated additively over all input data points and a 

parameterized threshold was applied. The corresponding  

consequents were initialized randomly as in the FCM-based 

approach. A clear disadvantage of this method is the 

uniformity of the shapes (the same widths) and the distribution 

of FSs, which do not necessarily reflect the original data 

structure. As mentioned, the cluster validity index was 

exploited at this design stage to identify an optimal set of 

parameters for all the initialization schemes considered in this 

work. This was accomplished in the framework of 5-fold 

crossvalidation (CV) on a calibration data set. Thus, the 

initialization methods are assumed to have already been in 

their optimal setups before the next steps of the fuzzy 

classifier design are taken. The outcome of their comparative 

analysis in the configuration with the fully developed IT2FLS 

classifiers is discussed in section IV. After the prototype 

T1FLS rule base was initialized, it was extended to serve as a 

framework for an IT2FLS. Each T1FL rule was described in 

terms of its antecedent FSs Ai (i=1,.., 2Nwin), parameterized 

with vector m of their means and vector s of their standard 

deviations, and a crisp consequent, c. As can be noticed in Fig. 

2, the uncertainty bounds of the FSs defining the antecedent 
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and the consequent part of an IT2FL rule can be controlled by 

additional quantities,  and , respectively. Therefore, 

the formulae for IT2FL rule induction from a classical T1FL 

rule prototype are straightforward: 

……………………………..(4) 

Vectors m1 and m2 refer to the lower and the upper bound of 

the uncertain means in IT2FSs, Ãi , and cleft, cright define the 

consequent centroid (cf. section IIIB). The standard 

deviations, s, of prototype T1FSs are kept the same for the 

resultant IT2FSs. The constrained parameterization of  

with a multiplicative factor dm in (5) facilitated parameter 

selection.  

 

……………………(5) 

Finally, sfuzz_inp used in the description of the fuzzified 

inputs was set as a scaled (scalar a) vector of the standard 

deviations of the input features in a training set. The 

parameters dm,  and a, assumed to be homogeneous for 

the entire rule base, determine the initial bounds of the 

uncertainty modeled in the system. Their selection procedure 

is discussed in subsection IIIB.3. 

 

2) Parameter optimization – learning approaches 

The second stage of the IT2FLS classifier design, after setting 

up an initial rule base, the quantities such as m1, m2, s, cleft, 

cright and sfuzz_inp were tuned for every rule. A global 

performance optimization approach was adopted in this 

regard. The proposed learning algorithm is based on the 

concept of steepest gradient descent with the mean square 

error loss function since the classifier’s output is continuous 

(with thresholding in the recall phase when a dichotomous 

class label is needed). The training method consists of three 

stages and heuristically combines two approaches known in 

the domain of IT2FLSs, the conventional steepest gradient 

descent algorithm developed by Liang and Mendel [24] and 

the method based on the dynamic optimal rate theorem 

[25][26]. This hybridization led to more robust and effective 

searching of a multimodal nonlinear space for an optimal 

configuration of the system parameters than the conventional 

Liang and Mendel’s approach in the given pattern recognition 

problem. In the first learning stage, the conventional steepest 

descent was applied with learning rates being reduced by a 

constant factor every 10 epochs. The selection of their initial 

values was an important part of the design. An algorithm 

based on the dynamic optimal rate theorem was applied in the 

second phase to accelerate the optimization of the parameters 

of the fuzzy rule consequents. In particular, the combination of 

sample-by-sample training of the standard deviations 

and the antecedent parameters and 

a batch update of the consequents  and was 

adopted. With the help of a validation data-set, an early 

stopping criterion was applied in the first and the second stage 

for terminating the training process, and more importantly, to 

enhance generalization capabilities of the classifier. In the 

third stage, the IT2FLS’s parameters were fine tuned using an 

algorithm similar to that of the first stage. However, the 

learning rates were significantly reduced and the number of 

epochs was limited to an arbitrary number of 5. The resulting 

setup of the system parameters was accepted only if the 

classifier’s performance in terms of the CA rate improved in 

comparison with the outcome of the second stage. Otherwise, 

the parameter configuration was rolled back. An analogous 

learning algorithm was developed for a T1FLS classifier to 

conduct a fair comparative analysis.  

3) Experimental setup 

The IT2FLS design process was used in two experimental 

paradigms adopted in this work. In the first one, the rule base 

parameters, dm, , a, and initial learning rates  were 

selected on one-session data using an extensive grid search in 

the  parameter space. To this end, a multiple-run 5-fold CV 

procedure was employed with the data split into training (60% 

of the one-session data set), validation (20%) and test (20%) 

subsets. The average test classification error (over all 5 test 

subsets and multiple runs) served as a criterion for the 

parameter identification.It provided an estimate of the 

classifier’s within-session generalization properties. For 

greater clarity, it should be re-emphasized that the selection of 

parameters for rule base initialization, described in subsection 

IIIB.1, was performed independently at an earlier stage with  

the cluster validity index as a performance measure. In the 

second experimental setup, referred to as a singlepass training-

test procedure, two-session data sets were involved. One 

session assumed a role of a calibration set whereas the other 

one served as unseen test data. Initial parameters were adopted 

from the earlier CV-based selection process conducted on the 

same session (calibration) data, which were next used (80% 

for training and 20% for validation) to design a fuzzy 

classifier for evaluation on the second session data set. This 

experimental paradigm allowed for verification of the 

IT2FLS’s capability to deal with ses sionto- session non-
stationarities in the EEG features. 

 

V. CONCLUSIONS AND FUTURE PERSPECTIVES 

 The paper has reported an advanced methodology for the 

design and implementation of an IT2FL classifier for data 

intensive non-stationary systems. The initialization scheme 

involving the modified MCA clustering and the enhanced 

gradient descent-based learning algorithm were found 

effective in alleviating the problem of poor initial conditions 

and slow convergence. It can thus be concluded that there is a 

need to investigate systematic data-driven design approaches 

since a classifier’s performance can be improved by the 

appropriate choice of a fuzzy rule base initialization method 

and a parameter learning scheme. The major aim of the 

comparative evaluation of several IT2FLS design variants was 

to identify the optimal approach to development of a robust 

fuzzy classifier for brain signal pattern recognition with its 
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potential applicability in other studies. Thus, the design 

approaches presented in this paper heavily exploited MI 

related brain signal recordings as a data source. 

Their heuristic modifications were motivated by the need to 

effectively address some of the challenges of BCI 

classification. Robust handling of non-stationary effects 

observed in the relevant EEG features was the key objective in 

this regard. Since the problem is generic in nature, it is 

envisaged that the proposed methodology should lend itself to 

tackling its various forms in a range of real-world 

applications. The proposed IT2FLS has been shown to offer a 

promising potential in accounting for non-stationary long-term 

variability in neurophysiological data. The concept of 

addressing this problem, where no underlying functional 

model explaining various origins of non-stationarities and 

their manifestations is available, in a data-driven framework of 

uncertainty handling apparatus deserves special attention in 

this regard. It appears particularly beneficial in applications 

like BCI design due to its suitability for rapid system 

prototyping and development. Further research is intended to 

explore the ways that the uncertainty bounds of the classifier’s 

output can be effectively exploited with the aim of further 

improving the performance of the classifier. A complementary 

analysis in on-line mode, involving a moving window 

approach to feature extraction and continuous classification, is 

also intended for future work. This will facilitate a more 

extensive assessment of the proposed method and allow for 

the use of other performance metrics. 
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